Prediction of isolated local recurrence after resection of pancreatic ducta - Evidencio
Prediction of isolated local recurrence after resection of pancreatic ductal adenocarcinoma: a nationwide study

Background: Distinguishing postoperative fibrosis from isolated local recurrence (ILR) after resection of pancreatic ductal adenocarcinoma (PDAC) is challenging. A prognostic model that helps to identify patients at risk of ILR can assist clinicians when evaluating patients’ postoperative imaging. This nationwide study aimed to develop a clinically applicable prognostic model for ILR after PDAC resection.

Methods: An observational cohort study was performed, including all patients who underwent PDAC resection in the Netherlands (2014-2019) (NCT04605237). Based on recurrence location (ILR, systemic, or both), multivariable cause-specific Cox-proportional hazard analysis was conducted to identify predictors for ILR and presented as hazard ratios (HRs) with 95% confidence intervals (CIs). A predictive model was developed using Akaike’s Information Criterion and bootstrapped discrimination and calibration indices were assessed.

Results: Amongst 1194/1693 patients (71%) with recurrence, 252 patients (21%) developed ILR. Independent predictors for ILR were resectability status (borderline versus resectable, HR1.42; 95%CI 1.03-1.96; P=0.03, and locally advanced versus resectable, HR1.11; 95%CI 0.68-1.82; P=0.66), tumor location (head versus body/tail, HR1.50; 95%CI 1.00-2.25; P=0.05), vascular resection (HR1.86; 95%CI 1.41-2.45; P<0.001), perineural invasion (HR1.47; 95%CI 1.01-2.13; P=0.02), number of positive lymph nodes (HR1.04; 95%CI 1.01-1.08; P=0.02), and resection margin status (R1<1mm versus R0≥1mm, HR1.64; 95%CI 1.25-2.14; P<0.001). Moderate performance (concordance index 0.66) with adequate calibration (slope 0.99) was achieved.

Conclusion: This nationwide study identified factors predictive of ILR after PDAC resection. Our prognostic model, available through www.pancreascalculator.com, can be utilized to identify patients with a higher a priori risk of developing ILR, providing important information in patient evaluation and prognostication.

Auteurs: Iris W.J.M. van Goor, Paul C.M. Andel, Hjalmar C. van Santvoort, I. Quintus Molenaar, Martijn P.W. Intven, Lois A. Daamen
Versie: 1.24
  • Publiek
  • Niet gespecificeerd
  • {{ modelType }}
  • Details
  • Valideer algoritme
  • Bewaar invoer
  • Laad invoer
Weergave
Eenheden

{{ section.title }}

{{ section.description }}

Bereken het resultaat

Vul meer parameters in om de berekening uit te voeren

chance of isolated local recurrence 12 months after resection of pancreatic ductal adenocarcinoma

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Resultaat interval {{ additionalResult.min }} tot {{ additionalResult.max }}

Conditionele informatie

{{ file.classification }}
PRO
Notitie
Notities zijn alleen zichtbaar in de resultaat download en worden niet opgeslagen door Evidencio

Dit algoritme wordt verstrekt voor educatieve, opleidings- en informatieve doeleinden. Het mag niet worden gebruikt ter ondersteuning van medische besluitvorming, of om medische of diagnostische diensten te verlenen. Lees onze volledige disclaimer.

Onderliggende algoritmes Onderdeel van
Opmerkingen
Opmerking
Vul een opmerking in.
Opmerkingen zijn voor iedereen zichtbaar

Algoritme feedback

Nog geen feedback 1 Opmerking {{ model.comments.length }} Opmerkingen
Op {{ comment.created_at }} {{ comment.user.username }} een niet langer geregistreerde auteur schreef:
{{ comment.content }}
logo

Log a.u.b. in om de Evidencio print-functies te gebruiken

Om de Evidencio print-functies te kunnen gebruiken dient u ingelogt te zijn.
Indien u nog geen Evidencio Community Account heeft kunt u eenvoudig een persoonlijk account aanmaken op:

https://www.evidencio.com/registration

Print rapport - Voorbeelden {{ new Date().toLocaleString() }}


Evidencio Community Account voordelen


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Disclaimer: Predictie algoritmes dienen enkel ter ondersteuning en naslag geraadpleegd te worden en zijn geen vervanging voor medische besluitvorming door professionals.
Evidencio v3.38 © 2015 - 2025 Evidencio. Alle rechten voorbehouden