Background: Distinguishing postoperative fibrosis from isolated local recurrence (ILR) after resection of pancreatic ductal adenocarcinoma (PDAC) is challenging. A prognostic model that helps to identify patients at risk of ILR can assist clinicians when evaluating patients’ postoperative imaging. This nationwide study aimed to develop a clinically applicable prognostic model for ILR after PDAC resection.
Methods: An observational cohort study was performed, including all patients who underwent PDAC resection in the Netherlands (2014-2019) (NCT04605237). Based on recurrence location (ILR, systemic, or both), multivariable cause-specific Cox-proportional hazard analysis was conducted to identify predictors for ILR and presented as hazard ratios (HRs) with 95% confidence intervals (CIs). A predictive model was developed using Akaike’s Information Criterion and bootstrapped discrimination and calibration indices were assessed.
Results: Amongst 1194/1693 patients (71%) with recurrence, 252 patients (21%) developed ILR. Independent predictors for ILR were resectability status (borderline versus resectable, HR1.42; 95%CI 1.03-1.96; P=0.03, and locally advanced versus resectable, HR1.11; 95%CI 0.68-1.82; P=0.66), tumor location (head versus body/tail, HR1.50; 95%CI 1.00-2.25; P=0.05), vascular resection (HR1.86; 95%CI 1.41-2.45; P<0.001), perineural invasion (HR1.47; 95%CI 1.01-2.13; P=0.02), number of positive lymph nodes (HR1.04; 95%CI 1.01-1.08; P=0.02), and resection margin status (R1<1mm versus R0≥1mm, HR1.64; 95%CI 1.25-2.14; P<0.001). Moderate performance (concordance index 0.66) with adequate calibration (slope 0.99) was achieved.
Conclusion: This nationwide study identified factors predictive of ILR after PDAC resection. Our prognostic model, available through www.pancreascalculator.com, can be utilized to identify patients with a higher a priori risk of developing ILR, providing important information in patient evaluation and prognostication.
{{ section.description }}
Dit algoritme wordt verstrekt voor educatieve, opleidings- en informatieve doeleinden. Het mag niet worden gebruikt ter ondersteuning van medische besluitvorming, of om medische of diagnostische diensten te verlenen. Lees onze volledige disclaimer.
With an Evidencio Community account you can:
A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.
{{ (typeof row === 'object') ? row.label : row }} |
{{ column }} | |
---|---|
{{ row.label }} | {{ value }} |
{{ error }}
Vul een wachtwoord in
Een wachtwoord moet minstens 8 karakters zijn
Een wachtwoord mag niet langer dan 64 karakters zijn
Kies een wachtwoord met minstens één hoofdletter.
Kies een wachtwoord met minstens één speciaal karakter (@$!%*#?&)
Ga a.u.b. akkoord met de Terms & Conditions en de Disclaimer
Vul uw e-mailadres in en we sturen u een link om uw wachtwoord te resetten.
E-mailadres
Vul een correct e-mailadres in
Als met dit e-mailadres een account is geregistreerd, ontvangt u een herstellink in uw e-mail.
Gebruik deze link om uw nieuwe wachtwoord in te stellen.
Geen mail ontvangen? Controleer uw spam map, of verstuur de email opnieuw.