Breast Carcinoma Mortality in Women Who Do Not Receive Adjuvant Therapy - Evidencio
Breast Carcinoma Mortality in Women Who Do Not Receive Adjuvant Therapy
Continuous prognostic model to predict breast carcinoma mortality more accurately compared with the Nottingham Prognostic Index (NPI).
Auteurs: Kattan MW, Giri D, Panageas KS, Hummer A, Cranor M, van Zee KJ, Hudis CA, Norton L, Borgen P, and Tan LK.
Versie: 1.43
  • Publiek
  • Oncologie
  • {{ modelType }}
  • Details
  • Valideer algoritme
  • Bewaar invoer
  • Laad invoer
Weergave
Eenheden

{{ section.title }}

{{ section.description }}

Bereken het resultaat

Vul meer parameters in om de berekening uit te voeren

Probability of 15-year breast carcinoma–specific mortality: %

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Resultaat interval {{ additionalResult.min }} tot {{ additionalResult.max }}

Conditionele informatie

Context information: 
This model contains additional variables to the well-known Nottingham Prognostic Index (NPI) risk score.1 It was based on a continuous function for calculating the probability of disease-specific death, which previously exhibited greater prognostic accuracy compared with risk group–based models.2,3

How this model should be used.
In addition to being useful for patient counseling, the model also has the potential to assist physicians in deciding whether adjuvant therapy is warranted in a given situation.

Model performance:
This model predicted disease-specific death more accurately compared with the Nottingham Prognostic Index (NIP) upon internal validation (c-index: 0.70 vs 0.61, respectively). Model calibration was considered adequate (Figure 1). External validation of the model is needed to further evaluate model robustness and generalizability. 

Source: 

  1. Kattan MW, Giri D, Panageas KS, et al. A tool for predicting breast carcinoma mortality in women who do not receive adjuvant therapy. Cancer. 2004 Dec 1;101(11):2509-15.
  2. Kattan MW, Leung DH, Brennan MF. A postoperative nomogram for 12-year sarcoma-specific death. J Clin Oncol. 2002; 20: 791–796. 
  3. Kattan MW, Zelefsky MJ, Kupelian PA, et al. Pretreatment nomogram for predicting the outcome of three-dimensional conformal radiotherapy in prostate cancer. J Clin Oncol. 2000; 18: 3352–3359.

{{ file.classification }}
PRO
Notitie
Notities zijn alleen zichtbaar in de resultaat download en worden niet opgeslagen door Evidencio

Dit algoritme wordt verstrekt voor educatieve, opleidings- en informatieve doeleinden. Het mag niet worden gebruikt ter ondersteuning van medische besluitvorming, of om medische of diagnostische diensten te verlenen. Lees onze volledige disclaimer.

Onderliggende algoritmes Onderdeel van
Opmerkingen
Opmerking
Vul een opmerking in.
Opmerkingen zijn voor iedereen zichtbaar

Algoritme feedback

Nog geen feedback 1 Opmerking {{ model.comments.length }} Opmerkingen
Op {{ comment.created_at }} {{ comment.user.username }} een niet langer geregistreerde auteur schreef:
{{ comment.content }}
logo

Log a.u.b. in om de Evidencio print-functies te gebruiken

Om de Evidencio print-functies te kunnen gebruiken dient u ingelogt te zijn.
Indien u nog geen Evidencio Community Account heeft kunt u eenvoudig een persoonlijk account aanmaken op:

https://www.evidencio.com/registration

Print rapport - Voorbeelden {{ new Date().toLocaleString() }}


Evidencio Community Account voordelen


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Disclaimer: Predictie algoritmes dienen enkel ter ondersteuning en naslag geraadpleegd te worden en zijn geen vervanging voor medische besluitvorming door professionals.
Evidencio v3.38 © 2015 - 2025 Evidencio. Alle rechten voorbehouden