3-year survival after resection in patients with pancreatic cancer - Evidencio
3-year survival after resection in patients with pancreatic cancer
An update of the current model is available by clicking this link

Predicts 3-year survival after resection in patients with pancreatic cancer based on lymph node ratio. This model includes the number of lymph nodes with metastases in relation to the total number of removed lymph nodes, the lymph node ratio (LNR), as one of the most powerful predictors of survival.
Auteurs: Toll, JAMG, Brosens, LAA, van DIeren S, van Gulik TM, Busch ORC, Besselink MGH, and Gouma Dj.
Versie: 1.24
  • Publiek
  • Chirurgie
  • {{ modelType }}
  • Details
  • Valideer algoritme
  • Bewaar invoer
  • Laad invoer
Weergave
Eenheden

{{ section.title }}

{{ section.description }}

Bereken het resultaat

Vul meer parameters in om de berekening uit te voeren

Estimated 3-years survival after pancreatoduodenectomy: %

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Resultaat interval {{ additionalResult.min }} tot {{ additionalResult.max }}

Conditionele informatie

How this model should be used: 
This model calculates 3-year survival after resection in patients with pancreatic cancer. The value of the model needs to be confirmed in independent study populations.

Lymph node ratio: 
Lymph node ratio (LNR) was identified as a strong predictor of survival in patients with pancreatic cancer. LNR is calculated by dividing the number of positive lymph nodes by the total number of lymph nodes. The optimal cut-off value for LNR was 0.18. In patients with a LNR of 0.18 or less, median survival was 26 months versus 16 months in patients with a LNR greater than 0.18 (P <0001).

Model performance:
Predictive factors for death in patients (n=350) with pancreatic ductal adenocarcinoma included in the nomogram were: R1 resection (hazard ratio (HR) 1.55, 95% CI: 1.07 to 2.25), poor tumour differentiation (HR 2.78, 1.40 to 5.52), LNR above 0.18 (HR 1.75, 1.13 to 2.70) and no adjuvant therapy (HR 1.54, 1.01 to 2.34). The C-statistic was 0.658 (0.632 to 0.698), and calibration was good (Hosmer–Lemeshow χ2 =5.67, P=0.773).

Source: 
Tol JA, Brosens LA, van Dieren S, et al. Impact of lymph node ratio on survival in patients with pancreatic and periampullary cancer. Br J Surg. 2015;102(3):237-45.

{{ file.classification }}
PRO
Notitie
Notities zijn alleen zichtbaar in de resultaat download en worden niet opgeslagen door Evidencio

Dit algoritme wordt verstrekt voor educatieve, opleidings- en informatieve doeleinden. Het mag niet worden gebruikt ter ondersteuning van medische besluitvorming, of om medische of diagnostische diensten te verlenen. Lees onze volledige disclaimer.

Onderliggende algoritmes Onderdeel van
Opmerkingen
Opmerking
Vul een opmerking in.
Opmerkingen zijn voor iedereen zichtbaar

Algoritme feedback

Nog geen feedback 1 Opmerking {{ model.comments.length }} Opmerkingen
Op {{ comment.created_at }} {{ comment.user.username }} een niet langer geregistreerde auteur schreef:
{{ comment.content }}
logo

Log a.u.b. in om de Evidencio print-functies te gebruiken

Om de Evidencio print-functies te kunnen gebruiken dient u ingelogt te zijn.
Indien u nog geen Evidencio Community Account heeft kunt u eenvoudig een persoonlijk account aanmaken op:

https://www.evidencio.com/registration

Print rapport - Voorbeelden {{ new Date().toLocaleString() }}


Evidencio Community Account voordelen


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Disclaimer: Predictie algoritmes dienen enkel ter ondersteuning en naslag geraadpleegd te worden en zijn geen vervanging voor medische besluitvorming door professionals.
Evidencio v3.38 © 2015 - 2025 Evidencio. Alle rechten voorbehouden