1-year overall survival in patients with resected non–small-cell lung can - Evidencio
1-year overall survival in patients with resected non–small-cell lung cancer
Because NSCLC is remarkably heterogeneous in regard to survival of individual patients, prediction of survival using the TNM staging system is imprecise. This postoperative nomogram was developed to predict 1-year overall survival of operable patients.
Auteurs: Liang W, Zhang L, Jiang G, Wang Q, Liu L, Liu D, Wang Z, Zhu Z, Deng Q, Xiong X, Shao W, Shi X, He J.
Versie: 1.16
  • Publiek
  • Oncologie
  • {{ modelType }}
  • Details
  • Valideer algoritme
  • Bewaar invoer
  • Laad invoer
Weergave
Eenheden

{{ section.title }}

{{ section.description }}

Bereken het resultaat

Vul meer parameters in om de berekening uit te voeren

Predicted 1-year survival:

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Resultaat interval {{ additionalResult.min }} tot {{ additionalResult.max }}

Conditionele informatie

How this model should be used: 
Liang et al (2015) established and validated a novel nomogram for predicting survival of patients with resected NSCLC.1 Through this model, clinicians could more precisely estimate the 1-year overall survival of individual patients after surgery and identify subgroups of patients who are in need of a specific treatment strategy.

Model performance: 
The calibration plots presented an excellent agreement in the primary cohort (N=5,261) and an acceptable agreement in the IASLC validation cohort (N=2,148) between the nomogram prediction and actual observation for 1-year overall survival (OS). The discriminative power (c-index) for the nomogram to predict OS (0.71; 95% CI, 0.70 to 0.72) was significantly higher than that of the TNM staging system (0.68; 95% CI, 0.67 to 0.69; P < 0.01). In the validation cohort, the reported c-index was 0.67 (95% CI, 0.65 to 0.69). 

Source: 
1 Liang W, Zhang L, Jiang G et al. Development and validation of a nomogram for predicting survival in patients with resectednon-small-cell lung cancer. J Clin Oncol. 2015;33(8):861-9.

{{ file.classification }}
PRO
Notitie
Notities zijn alleen zichtbaar in de resultaat download en worden niet opgeslagen door Evidencio

Dit algoritme wordt verstrekt voor educatieve, opleidings- en informatieve doeleinden. Het mag niet worden gebruikt ter ondersteuning van medische besluitvorming, of om medische of diagnostische diensten te verlenen. Lees onze volledige disclaimer.

Onderliggende algoritmes Onderdeel van
Opmerkingen
Opmerking
Vul een opmerking in.
Opmerkingen zijn voor iedereen zichtbaar

Algoritme feedback

Nog geen feedback 1 Opmerking {{ model.comments.length }} Opmerkingen
Op {{ comment.created_at }} {{ comment.user.username }} een niet langer geregistreerde auteur schreef:
{{ comment.content }}
logo

Log a.u.b. in om de Evidencio print-functies te gebruiken

Om de Evidencio print-functies te kunnen gebruiken dient u ingelogt te zijn.
Indien u nog geen Evidencio Community Account heeft kunt u eenvoudig een persoonlijk account aanmaken op:

https://www.evidencio.com/registration

Print rapport - Voorbeelden {{ new Date().toLocaleString() }}


Evidencio Community Account voordelen


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Disclaimer: Predictie algoritmes dienen enkel ter ondersteuning en naslag geraadpleegd te worden en zijn geen vervanging voor medische besluitvorming door professionals.
Evidencio v3.38 © 2015 - 2025 Evidencio. Alle rechten voorbehouden