Hunt and Hess classification of subarachnoid hemorrhage - Evidencio
Hunt and Hess classification of subarachnoid hemorrhage
The Hunt and Hess classification enables classification of the severity of a subarachnoid hemorrhage and predicts its mortality.
Autores de la investigación: Hunt WE, Hess RM
Versión: 1.16
  • Público
  • Traumatología
  • {{ modelType }}
  • Detalles
  • Validar algoritme
  • Guardar entrada
  • Entrada de carga
Mostrar
Unidades

{{ section.title }}

{{ section.description }}

Calcular el resultado

Establezca más parámetros para realizar el cálculo

Hunt & Hess risk score: points

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Intervalo de resultados {{ additionalResult.min }} a {{ additionalResult.max }}

Información condicional

 


Model performance:
  • In a study bij Hunt & Huss (1968) including 275 cases, the mortality was 20% for patients admitted to the hospital at grade I or II, whereas in patients who reached the operating room for any procedure whatever at grade I or II, it was 14%. The difference in mortality was due to a number of instances of early fatal rebleeding. 
  • Worldwide, different scales are used to assess the clinical condition on admission after aneurysmal subarachnoid hemorrhage. In addition to the prognostic value, the inter-rater variability should be taken into account when deciding which scale preferably should be used.
  • In a validation study by Degen et al (2011) including 50 subarachnoid hemorrhage patients, the Hunt and Hess scale showed moderate interobserver agreement (weighted kappa value: 0.48; 95% CI, 0.36–0.59). The World Federation of Neurological Surgeons and the Prognosis on Admission of Aneurysmal Subarachnoid Hemorrhage scales both showed good interobserver agreement (0.64 and 0.60 respectively) with overlapping CI. 

{{ file.classification }}
PRO
Nota
Las notas sólo son visibles en la descarga de resultados y no serán guardadas por Evidencio

Este algoritme se proporciona con fines educativos, formativos e informativos. No debe utilizarse para apoyar la toma de decisiones médicas ni para prestar servicios médicos o de diagnóstico. Lea nuestro disclaimer.

Algoritmer subyacentes Parte de
Comentarios
Comentario
Escriba un comentario
Los comentarios son visibles para cualquiera

Comentarios sobre el algoritme

Aún no hay comentarios 1 comentario {{ model.comments.length }} Comentarios
En {{ comment.created_at }} {{ comment.user.username }} un autor ya no registrado escribió:
{{ comment.content }}
logo

Inicia sesión para activar las funciones de impresión de Evidencio

Para poder utilizar las funciones de impresión de Evidencio, debe estar conectado.
Si no tiene una cuenta de la Comunidad Evidencio puede crear su cuenta personal gratuita en:

https://www.evidencio.com/registration

Resultados impresos - Ejemplos {{ new Date().toLocaleString() }}


Beneficios de la Cuenta Comunitaria Evidencio


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Descargo de responsabilidad: Los cálculos por sí solos nunca deben dictar la atención al paciente, y no sustituyen al juicio profesional.
Evidencio v3.38 © 2015 - 2025 Evidencio. Todos los derechos reservados