MSKCC Nomogram: Probability of organ-confined disease in prostate cancer pa - Evidencio
MSKCC Nomogram: Probability of organ-confined disease in prostate cancer patients (includes biopsy cores)
Calculates the probability that the cancer will be found to be confined to the prostate gland when the prostate is removed (c-index: 0.71). This model includes biopsy cores. 

Disqualifying treatments: This model does not apply to patients who underwent preoperative hormone- or radiation therapy for prostate cancer. 
Auteurs: Source: Memorial Sloan Kettering Cancer Center (US)
Versie: 2.8
  • Publiek
  • Oncologie
  • {{ modelType }}
  • Details
  • Valideer algoritme
  • Bewaar invoer
  • Laad invoer
Weergave
Eenheden

{{ section.title }}

{{ section.description }}

Bereken het resultaat

Vul meer parameters in om de berekening uit te voeren

Probability of organ-confined disease:

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Resultaat interval {{ additionalResult.min }} tot {{ additionalResult.max }}

Conditionele informatie

How this model should be used:
This model calculates the probability that the cancer will be found to be confined to the prostate gland when the prostate is removed. This model does not apply to patients who underwent preoperative hormone- or radiation therapy for prostate cancer. 

Result interpretation: 
A low probability of organ-confined disease does not necessarily mean that surgery cannot cure the cancer. About 50 percent of patients who do not have organ-confined cancer have long-term freedom from recurrence following surgery. The probability of having organ-confined prostate cancer is not equal to the probability that surgery will provide long-term freedom from recurrence, because the cancer does not have to be organ confined to be successfully treated with surgery.

Model performance: 
A validation was performed to assess the discriminative power of the model. On the website of the MSKCC, a c-index of 0.71 is reported. No specific details regarding the validation process are disclosed.

Alternative models: 
For cases in which the number of cores taken at biopsy is unknown, an alternative prediction model that does not require this information is available. This alternative model provides slightly less refined predictions (c-index 0.67 versus 0.71, respectively).


Source: Memorial Sloan Kettering Cancer Center.

{{ file.classification }}
PRO
Notitie
Notities zijn alleen zichtbaar in de resultaat download en worden niet opgeslagen door Evidencio

Dit algoritme wordt verstrekt voor educatieve, opleidings- en informatieve doeleinden. Het mag niet worden gebruikt ter ondersteuning van medische besluitvorming, of om medische of diagnostische diensten te verlenen. Lees onze volledige disclaimer.

Onderliggende algoritmes Onderdeel van
Opmerkingen
Opmerking
Vul een opmerking in.
Opmerkingen zijn voor iedereen zichtbaar

Algoritme feedback

Nog geen feedback 1 Opmerking {{ model.comments.length }} Opmerkingen
Op {{ comment.created_at }} {{ comment.user.username }} een niet langer geregistreerde auteur schreef:
{{ comment.content }}
logo

Log a.u.b. in om de Evidencio print-functies te gebruiken

Om de Evidencio print-functies te kunnen gebruiken dient u ingelogt te zijn.
Indien u nog geen Evidencio Community Account heeft kunt u eenvoudig een persoonlijk account aanmaken op:

https://www.evidencio.com/registration

Print rapport - Voorbeelden {{ new Date().toLocaleString() }}


Evidencio Community Account voordelen


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Disclaimer: Predictie algoritmes dienen enkel ter ondersteuning en naslag geraadpleegd te worden en zijn geen vervanging voor medische besluitvorming door professionals.
Evidencio v3.38 © 2015 - 2025 Evidencio. Alle rechten voorbehouden