CKD-EPI creatinine equation (2009) - Evidencio
CKD-EPI creatinine equation (2009)
The CKD-EPI creatinine equation is based on the same four variables as the MDRD Study equation, but uses a 2-slope spline to model the relationship between estimated GFR and serum creatinine, and a different relationship for age, sex and race. The equation was reported to perform better and with less bias than the MDRD Study equation, especially in patients with higher GFR. This results in reduced misclassification of CKD.
Autores de la investigación: Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, and Coresh J.
Versión: 1.16
  • Público
  • Nefrología
  • {{ modelType }}
  • Detalles
  • Validar algoritme
  • Guardar entrada
  • Entrada de carga
Mostrar
Unidades

{{section.title}}

Calcular el resultado

Establezca más parámetros para realizar el cálculo

Estimated GFR: ml/min/1.73m2

{{ resultSubheader }}
{{ chart.title }}
Intervalo de resultados {{ additionalResult.min }} a {{ additionalResult.max }}

Información condicional

The CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equation was developed in an effort to create a more precise formula to estimate glomerular filtrate rate (GFR) from serum creatinine and other readily available clinical parameters, especially at when actual GFR is >60 mL/min per 1.73m2.

Researchers pooled data from multiple studies to develop and validate this new equation. They randomly divided 10 studies which included 8254 participants, into separate data sets for development and internal validation. 16 additional studies, which included 3896 participants, were used for external validation.

The CKD-EPI equation performed better than the MDRD (Modification of Diet in Renal Disease Study) equation, especially at higher GFR, with less bias and greater accuracy. When looking at NHANES (National Health and Nutrition Examination Survey) data, the median estimated GFR was 94.5 mL/min per 1.73 m2 vs. 85.0 mL/min per 1.73 m2, and the prevalence of chronic kidney disease was 11.5% versus 13.1%.

{{ file.classification }}
PRO
Nota
Las notas sólo son visibles en la descarga de resultados y no serán guardadas por Evidencio

Este algoritme se proporciona con fines educativos, formativos e informativos. No debe utilizarse para apoyar la toma de decisiones médicas ni para prestar servicios médicos o de diagnóstico. Lea nuestro disclaimer.

Algoritmer subyacentes Parte de
Comentarios
Comentario
Escriba un comentario
Los comentarios son visibles para cualquiera

Comentarios sobre el algoritme

Aún no hay comentarios 1 comentario {{ model.comments.length }} Comentarios
En {{ comment.created_at }} {{ comment.user.username }} un autor ya no registrado escribió:
{{ comment.content }}
logo

Inicia sesión para activar las funciones de impresión de Evidencio

Para poder utilizar las funciones de impresión de Evidencio, debe estar conectado.
Si no tiene una cuenta de la Comunidad Evidencio puede crear su cuenta personal gratuita en:

https://www.evidencio.com/registration

Resultados impresos - Ejemplos {{ new Date().toLocaleString() }}


Beneficios de la Cuenta Comunitaria Evidencio


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Descargo de responsabilidad: Los cálculos por sí solos nunca deben dictar la atención al paciente, y no sustituyen al juicio profesional.
Evidencio v3.35 © 2015 - 2025 Evidencio. Todos los derechos reservados