How this model should be used:
This prediction model could assist in identification of insufficient responders at diagnosis. For patients with high probability of insufficient response to MTX, additional biologics or JAK-inhibitors could be prescribed. For those with low probabilities of insufficient response, these expensive treatments could be spared. This distinction at diagnosis could save precious time for insufficient responders, allowing earlier control of disease activity resulting in better long-term outcomes.
Model performance:
Discriminative power of the model was assessed through evaluating the area under the receiver operating characteristic curve (AUC). The AUC of the model was 0.75 (95% CI: 0.69 – 0.81), indicating that the model correctly classified patients in 75% of the cases.
Goodness-of-fit between the predicted probabilities and observed values was tested using the Hosmer-Lemeshow test. The associated P-value was 0.634, indicating good model fit.
Decisions on appropriate risk cut-offs:
Taking into consideration the “window of opportunity” for optimal treatment we consider it crucial to adequately treat insufficient MTX responders with additional bDMARDs/tsDMARDs. Therefore, our goal for this prediction model was to identify as many insufficient responders as possible, while at the same time attempting to restrict the use of bDMARDs/tsDMARDs to those patients who really need them, hence to avoid misclassification of sufficient responders. Considering this, a cut-off probability of 70% (of insufficient response) could be chosen.
At this cut-off, 75% of patients classified as insufficient responder match actual insufficient responders (PPV) and could be treated with additional bDMARDs/tsDMARDs. Additionally, at this cut-off 86% of all sufficient responders would be correctly classified as such (specificity) and could be spared additional treatment.
Ce modèle est fourni à des fins d'éducation, de formation et d'information. Il ne doit pas être utilisé pour aider à la prise de décision médicale ou pour fournir des services médicaux ou de diagnostic. Lire l'intégralité de notre disclaimer.
With an Evidencio Community account you can:
A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction models.
{{ (typeof row === 'object') ? row.label : row }} |
Veuillez saisir un mot de passe
Un mot de passe doit comporter au moins 8 caractères
Un mot de passe ne peut pas être plus long que 64 caractères.
Choisissez un mot de passe avec au moins une lettre majuscule
Choisissez un mot de passe avec au moins un caractère spécial (@$!%*#?&)
Veuillez accepter les conditions générales et la clause de non-responsabilité
Veuillez fournir votre adresse e-mail et nous vous enverrons un lien pour réinitialiser votre mot de passe.
Adresse email
Veuillez entrer un email valide
Si un compte a été enregistré avec cette adresse e-mail, vous recevrez un lien de récupération dans votre courrier
Veuillez utiliser le lien de réinitialisation du mot de passe contenu dans le mail pour définir votre nouveau mot de passe
Vous n'avez pas encore reçu l'e-mail ? Veuillez vérifier votre dossier spam, ou renvoyer l'email