How this model should be used:
This prediction model could assist in identification of insufficient responders at diagnosis. For patients with high probability of insufficient response to MTX, additional biologics or JAK-inhibitors could be prescribed. For those with low probabilities of insufficient response, these expensive treatments could be spared. This distinction at diagnosis could save precious time for insufficient responders, allowing earlier control of disease activity resulting in better long-term outcomes.
Model performance:
Discriminative power of the model was assessed through evaluating the area under the receiver operating characteristic curve (AUC). The AUC of the model was 0.75 (95% CI: 0.69 – 0.81), indicating that the model correctly classified patients in 75% of the cases.
Goodness-of-fit between the predicted probabilities and observed values was tested using the Hosmer-Lemeshow test. The associated P-value was 0.634, indicating good model fit.
Decisions on appropriate risk cut-offs:
Taking into consideration the “window of opportunity” for optimal treatment we consider it crucial to adequately treat insufficient MTX responders with additional bDMARDs/tsDMARDs. Therefore, our goal for this prediction model was to identify as many insufficient responders as possible, while at the same time attempting to restrict the use of bDMARDs/tsDMARDs to those patients who really need them, hence to avoid misclassification of sufficient responders. Considering this, a cut-off probability of 70% (of insufficient response) could be chosen.
At this cut-off, 75% of patients classified as insufficient responder match actual insufficient responders (PPV) and could be treated with additional bDMARDs/tsDMARDs. Additionally, at this cut-off 86% of all sufficient responders would be correctly classified as such (specificity) and could be spared additional treatment.
Este modelo se proporciona con fines educativos, formativos e informativos. No debe utilizarse para apoyar la toma de decisiones médicas ni para prestar servicios médicos o de diagnóstico. Lea nuestro disclaimer.
With an Evidencio Community account you can:
A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction models.
{{ (typeof row === 'object') ? row.label : row }} |
Por favor, introduzca una contraseña
Una contraseña debe tener al menos 8 caracteres
Una contraseña no puede tener más de 64 caracteres
Elija una contraseña con al menos una letra mayúscula
Elija una contraseña con al menos un carácter especial (@$!%*#?&)
Por favor, acepte los Términos y Condiciones y el Aviso Legal
Proporcione su dirección de correo electrónico y le enviaremos un enlace para restablecer su contraseña
Dirección de correo electrónico
Por favor, introduzca un correo electrónico válido
Si se registró una cuenta con esta dirección de correo electrónico, recibirá un enlace de recuperación en su correo
Por favor, utiliza el enlace de restablecimiento de contraseña que aparece en él para establecer tu nueva contraseña
¿Aún no has recibido el correo? Por favor, comprueba tu carpeta de spam, o reenviar el correo electrónico