Development and external validation of a prediction model for overall survi - Evidencio
Development and external validation of a prediction model for overall survival after resection of distal cholangiocarcinoma
OBJECTIVE
To develop and validate a prediction model for 3-year overall survival after pancreatoduodenectomy for distal cholangiocarcinoma.

DESIGN
International cohort study.

MAIN OUTCOME MEASURE
3-year overall survival
Forschungsautoren: Ali Belkouz, Stijn van Roessel, Marin Strijker, Jacob L. van Dam, Lois Daamen, Lydia G. van der Geest, Alberto Balduzzi, Andrea Benedetti Cacciaguerra, Susan van Dieren, Quintus Molenaar, Bas Groot Koerkamp, Joanne Verheij, Elizabeth van Eycken, Giuseppe Malleo, Mohammed Abu Hilal, Martijn G.H. van Oijen, Ivan Borbath, Chris Verslype, Cornelis J.A. Punt, Marc G. Besselink, Heinz-Jozef Klümpen, and Dutch Pancreatic Cancer Group
Version: 1.15
  • Öffentlich
  • Chirurgie
  • {{ modelType }}
  • Details
  • Algorithmus validieren
  • Eingabe speichern
  • Eingabe laden
Anzeige
Einheiten

{{ section.title }}

{{ section.description }}

Berechnen Sie das Ergebnis

Legen Sie weitere Parameter zur Durchführung der Berechnung fest

3-Year overall survival probability

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Ergebnisintervall {{ additionalResult.min }} bis {{ additionalResult.max }}

Bedingte Informationen

Background: Various prognostic factors are associated with overall survival (OS) after resection of distal cholangiocarcinoma (dCCA). The objective of this study was to develop and validate a prediction model for 3-year OS after pancreatoduodenectomy for dCCA.

Methods: The derivation cohort consisted of all patients who underwent pancreatoduodenectomy for dCCA in the Netherlands (2009-2016). Clinically relevant variables were selected based on the Akaike information criterion using a multivariate Cox proportional hazards regression model, with model performance being assessed by concordance index (C-index) and calibration plots. External validation was performed using patients from the Belgium Cancer Registry (2008-2016), and patients from two university hospitals of Southampton (U.K.) and Verona (Italy).

Results: Independent prognostic factors for OS in the derivation cohort of 454 patients after pancreatoduodenectomy for dCCA were age (HR 1.02, 95% CI 1.01-1.03), pT (HR 1.43, 95% CI 1.07-1.90) and pN category (pN1: HR 1.78, 95% CI 1.37-2.32; pN2: HR 2.21, 95% CI 1.63-3.01), resection margin status (HR 1.79, 95% CI 1.39-2.29) and tumour differentiation (HR 2.02, 95% CI 1.62-2.53). The prediction model was based on these prognostic factors. The optimism-adjusted C-indices were similar in the derivation cohort (0.69), and in the Belgian (0.66) and Southampton-Verona (0.68) validation cohorts. Calibration was accurate in the Belgian validation cohort (slope = 0.93, intercept = 0.12), but slightly less optimal in the Southampton-Verona validation cohort (slope = 0.88, intercept = 0.32). Based on this model, three risk groups with different prognoses were identified (3-year OS of 65.4%, 33.2% and 11.8%).

Conclusions: The prediction model for 3-year OS after resection of dCCA had reasonable performance in both the derivation and geographically external validation cohort. Calibration slightly differed between validation cohorts. The model is readily available via www. pancreascalculator.com to inform patients from Western European countries on their prognosis, and may be used to stratify patients for clinical trials.

{{ file.classification }}
PRO
Anmerkung
Notizen sind nur im Ergebnis-Download sichtbar und werden von Evidencio nicht gespeichert.

Dieses Algorithmus wird zu Bildungs-, Schulungs- und Informationszwecken bereitgestellt. Es darf nicht zur Unterstützung der medizinischen Entscheidungsfindung oder zur Erbringung medizinischer oder diagnostischer Leistungen verwendet werden. Lesen Sie unseren vollständigen disclaimer.

Zugrunde liegende Algorithmen Teil von
Kommentare
Kommentar
Bitte geben Sie einen Kommentar
Kommentare sind für jeden sichtbar.

Algorithmus-Feedback

Noch keine Rückmeldung 1 Kommentar {{ model.comments.length }} Kommentare
An {{ comment.created_at }} {{ comment.user.username }} ein nicht mehr registrierter Autor schrieb:
{{ comment.content }}
logo

Bitte melden Sie sich an, um die Evidencio-Druckfunktionen zu aktivieren

Um die Evidencio-Druckfunktionen nutzen zu können, müssen Sie angemeldet sein.
Wenn Sie keinen Evidencio-Community-Account besitzen, können Sie sich kostenlos ein persönliches Konto erstellen:

https: // www. evidencio.com/registration

Gedruckte Ergebnisse - Beispiele {{ new Date().toLocaleString() }}


Vorteile des Evidencio-Community-Kontos


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Disclaimer: Berechnungen allein sollten niemals die Pflege der Patienten vorschreiben und ersetzen kein professionelles Urteilsvermögen.
Evidencio v3.38 © 2015 - 2025 Evidencio. Alle Rechte vorbehalten