Predicting severity of community-acquired pneumonia with the Pneumonia Sev - Evidencio
Predicting severity of community-acquired pneumonia with the Pneumonia Severity Index (PSI) score
The PSI prediction rule accurately identifies the patients with community-acquired pneumonia who are at low risk for death and other adverse outcomes. This prediction rule may help physicians make more rational decisions about hospitalization for patients with pneumonia.
Autori della ricerca: Fine MJ, Auble TE, Yealy DM, Hanusa BH, Weissfeld LA, Singer DE, Coley CM, Marrie TJ, and Kapoor WN.
Versione: 1.27
  • Pubblico
  • Polmonologia
  • {{ modelType }}
  • Dettagli
  • Convalida del algoritmo
  • Salvare l'input
  • Ingresso di carico
Display
Unità

{{ section.title }}

{{ section.description }}

Calcolare il risultato

Impostare altri parametri per eseguire il calcolo

Total pneumonia severity index (PSI) score: points

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Intervallo di risultati {{ additionalResult.min }} a {{ additionalResult.max }}

Informazioni condizionali

How this model should be used:
The PSI prediction rule identifies three distinct risk classes (I, II, and III) of patients who are at sufficiently low risk for death and other adverse medical outcomes that physicians can consider outpatient treatment or an abbreviated course of inpatient care for them.1 The risk stratification provided by de PSI model could also help target low-risk patients at the time of admission for whom rapid conversion from intravenous to oral antimicrobial therapy and early discharge might be appropriate.

Model performance: 
No significant differences in mortality in each of the five PSI risk classes were found among three large study cohorts:

  • MedisGroups derivation cohort (N=14,199 patients)
  • MedisGroups validation cohort (N=38,039 patients)
  • PORT validation cohort (N=2287 patients)
Although this study provides preliminary evidence that the PSI prediction rule could help physicians determine when hospital care is appropriate for patients with community-acquired pneumonia, firm recommendations for its clinical use will depend on future prospective trials to confirm its effectiveness and safety. Furthermore, although the PSI exhibits a high discriminatory power for assigning appropriate risk class, it is complicated to calculate, limiting its clinical application.

Source:
  1. Fine MJ, Auble TE, Yealy DM et al. A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med 1997;336:243-50.

{{ file.classification }}
PRO
Nota
Le note sono visibili solo nel download dei risultati e non vengono salvate da Evidencio.

Questo algoritmo viene fornito a scopo educativo, formativo e informativo. Non deve essere utilizzato a supporto di decisioni mediche o per fornire servizi medici o diagnostici. Leggete il nostro sito completo disclaimer.

Algoritmi sottostanti Parte di
Commenti
Commento
Inserisci un commento
I commenti sono visibili a chiunque

Feedback del algoritmo

Ancora nessun feedback 1 Commento {{ model.comments.length }} Commenti
Su {{ comment.created_at }} {{ comment.user.username }} un autore non più registrato ha scritto:
{{ comment.content }}
logo

Effettuare l'accesso per abilitare le funzionalità di stampa di Evidencio

Per utilizzare le funzioni di stampa di Evidencio, è necessario aver effettuato il login.
Se non si dispone di un account comunitario Evidencio, è possibile creare un account personale gratuito all'indirizzo:

https://www.evidencio.com/registration

Risultati stampati - Esempi {{ new Date().toLocaleString() }}


Vantaggi del conto comunitario Evidencio


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Esclusione di responsabilità: i calcoli da soli non dovrebbero mai dettare la cura del paziente e non sostituiscono il giudizio professionale.
Evidencio v3.38 © 2015 - 2025 Evidencio. Tutti i diritti riservati