Hypertensive disorders of pregnancy risk prediction - Evidencio
Hypertensive disorders of pregnancy risk prediction

A predictive model aimed at reducing the risk of hypertensive disorders of pregnancy (HDP) through tailored interpregnancy weight management strategies.

Autori della ricerca: Tano, S., Kotani, T., Ushida, T. et al.
Versione: 1.2
  • Pubblico
  • Non specificato
  • {{ modelType }}
  • Dettagli
  • Convalida del algoritmo
  • Salvare l'input
  • Ingresso di carico
Display
Unità

{{ section.title }}

{{ section.description }}

Calcolare il risultato

Impostare altri parametri per eseguire il calcolo

% risk on developing HDP in a second pregnancy

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Intervallo di risultati {{ additionalResult.min }} a {{ additionalResult.max }}

Informazioni condizionali

The model should be interpreted as follows, if for example the model predicts a 25% risk, this means that out of 100 women with similar profiles, approximately 25 are expected to develop HDP in their next pregnancy.

The model allows women to visualize how different interpregnancy weight changes can increase or decrease their HDP risk. For example, reducing BMI by a certain amount might lower the risk from 25% to 15%, guiding realistic and achievable weight management goals.


Clinical Implications

  • High Risk: Suggests the need for proactive intervention, such as weight management, lifestyle changes, and closer medical monitoring before and during pregnancy.

  • Low Risk: Indicates a lower likelihood of HDP but still requires general healthy pregnancy practices.

No cut-off values for high-risk and low-risk were determined.

The percentage is not an absolute prediction but a probabilistic estimate to support decision-making. It should be used in combination with medical advice to create personalized health plans.


HDP, affecting 8–10% of pregnancies, is a leading cause of maternal mortality. Current preventive strategies mainly focus on post-conception interventions, leaving a gap in effective pre-conception care, especially regarding weight management. Standard weight management guidelines, such as achieving a BMI of 18.5–25.0 kg/m², are often unattainable for severely obese women. This highlights the need for a more personalized and achievable approach to weight management between pregnancies.

The model is designed to help women planning future pregnancies understand their personalized risk of developing HDP and visualize how interpregnancy weight management can modify this risk. It empowers healthcare providers and patients to collaboratively set realistic, personalized weight management goals that may reduce HDP risk.

The model is specifically developed and validated for women transitioning from their first to second pregnancy. For women planning a third pregnancy, the model should be adapted and validated in a new study.

Input: Age at delivery of previous pregnancy, BMI before previous pregnancy, history of HDP (HDP at the index pregnancy), Pi (Pregnancy interval), ABc (Annual BMI change) 

Output: Predicted probability of developing HDP in a subsequent pregnancy and a visual representation of how changes in BMI can modify HDP risk.

Intended use: Weight management between first and second pregnancy.

{{ file.classification }}
PRO
Nota
Le note sono visibili solo nel download dei risultati e non vengono salvate da Evidencio.

Questo algoritmo viene fornito a scopo educativo, formativo e informativo. Non deve essere utilizzato a supporto di decisioni mediche o per fornire servizi medici o diagnostici. Leggete il nostro sito completo disclaimer.

Algoritmi sottostanti Parte di
Commenti
Commento
Inserisci un commento
I commenti sono visibili a chiunque

Feedback del algoritmo

Ancora nessun feedback 1 Commento {{ model.comments.length }} Commenti
Su {{ comment.created_at }} {{ comment.user.username }} un autore non più registrato ha scritto:
{{ comment.content }}
logo

Effettuare l'accesso per abilitare le funzionalità di stampa di Evidencio

Per utilizzare le funzioni di stampa di Evidencio, è necessario aver effettuato il login.
Se non si dispone di un account comunitario Evidencio, è possibile creare un account personale gratuito all'indirizzo:

https://www.evidencio.com/registration

Risultati stampati - Esempi {{ new Date().toLocaleString() }}


Vantaggi del conto comunitario Evidencio


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Esclusione di responsabilità: i calcoli da soli non dovrebbero mai dettare la cura del paziente e non sostituiscono il giudizio professionale.
Evidencio v3.38 © 2015 - 2025 Evidencio. Tutti i diritti riservati