Nomogram to detect prostate cancer for lesions in the transitional zone in - Evidencio
Nomogram to detect prostate cancer for lesions in the transitional zone in patients with PSA between 4-20 ng/mL

Purpose: To develop and externally validate nomograms integrating quantitative apparent diffusion coefficient (ADC) sequence, Prostate Imaging Reporting and Data System (PI-RADS) derived from biparametric MRI (bp-MRI), and clinical indicators to detect prostate cancer (PCa) and clinically significant prostate cancer (csPCa) in patients with prostate specific antigen (PSA) between 4-20 ng/mL.

Materials and methods: Nomograms were developed using data from a cohort of suspected prostate cancer patients with elevated PSA of 4–20 ng/mL who underwent prostate MRI and biopsy at our institution between January 1, 2018, and August 31, 2023 (n = 440). The outcomes were the presence of csPCa and PCa. Nomograms were constructed separately for lesions located in the peripheral and transitional zones. Significant variables identified through univariate logistic analysis and LASSO regression analysis were used to construct four separate nomograms. These nomograms were subsequently validated and evaluated using an external independent cohort of patients obtained from the Prostate Imaging: Cancer AI (PI-CAI) database (n = 313).

Results: A total of 131 (29.8%) and 106 (33.9%) patients had csPCa in the training and external validation cohorts, respectively. Age, PI-RADS, ADC, and PSA density (PSAD) were independent predictors in the prediction model for csPCa in the peripheral zone (PZ), showing an area under the curve (AUC) of 0.934 (95% CI, 0.906-0.962). For csPCa in the transitional zone (TZ), PI-RADS, ADC, and PSAD were independent predictors, with an AUC of 0.903 (95% CI, 0.824-0.983). Additionally, PI-RADS and ADC were independent predictors for PCa in PZ, with an AUC of 0.882 (95% CI, 0.840-0.925), while PI-RADS and PSAD were independent predictors in TZ, with an AUC of 0.764 (95% CI, 0.683-0.844). All four nomograms demonstrated good discrimination with high AUCs in the external validation cohort. Calibration curves indicated good agreement, and decision curve analyses (DCAs) confirmed the clinical benefits of the nomograms.

Conclusions: ADC proved to be the strongest predictor of csPCa in both PZ and TZ, and for PCa specifically in PZ. We developed nomograms integrating ADC, bp-MRI-derived PI-RADS, age and PSAD to detect csPCa and PCa in patients with PSA of 4–20 ng/mL.

Auteurs: Kunlin Wu
Versie: 3.0
  • Publiek
  • Urologie
  • {{ modelType }}
  • Details
  • Valideer algoritme
  • Bewaar invoer
  • Laad invoer
Weergave
Eenheden

{{ section.title }}

{{ section.description }}

Bereken het resultaat

Vul meer parameters in om de berekening uit te voeren

Risk of PCa in TZ is .

{{ resultSubheader }}
{{ $t('download_result_availability') }}
{{ chart.title }}
Resultaat interval {{ additionalResult.min }} tot {{ additionalResult.max }}

Conditionele informatie

{{ file.classification }}
PRO
Notitie
Notities zijn alleen zichtbaar in de resultaat download en worden niet opgeslagen door Evidencio

Dit algoritme wordt verstrekt voor educatieve, opleidings- en informatieve doeleinden. Het mag niet worden gebruikt ter ondersteuning van medische besluitvorming, of om medische of diagnostische diensten te verlenen. Lees onze volledige disclaimer.

Onderliggende algoritmes Onderdeel van
Opmerkingen
Opmerking
Vul een opmerking in.
Opmerkingen zijn voor iedereen zichtbaar

Algoritme feedback

Nog geen feedback 1 Opmerking {{ model.comments.length }} Opmerkingen
Op {{ comment.created_at }} {{ comment.user.username }} een niet langer geregistreerde auteur schreef:
{{ comment.content }}
logo

Log a.u.b. in om de Evidencio print-functies te gebruiken

Om de Evidencio print-functies te kunnen gebruiken dient u ingelogt te zijn.
Indien u nog geen Evidencio Community Account heeft kunt u eenvoudig een persoonlijk account aanmaken op:

https://www.evidencio.com/registration

Print rapport - Voorbeelden {{ new Date().toLocaleString() }}


Evidencio Community Account voordelen


With an Evidencio Community account you can:

  • Create and publish your own prediction algorithms.
  • Share your prediction algorithms with your colleagues, research group, organization or the world.
  • Review and provide feedback on algorithms that have been shared with you.
  • Validate your algorithms and validate algorithms from other users.
  • Find algorithms based on Title, Keyword, Author, Institute, or MeSH classification.
  • Use and save prediction algorithms and their data.
  • Use patient specific protocols and guidelines based on sequential algorithms and decision trees.
  • Stay up-to-date with new algorithms in your field as they are published.
  • Create your own lists of favorite algorithms and topics.

A personal Evidencio account is free, with no strings attached!
Join us and help create clarity, transparency, and efficiency in the creation, validation, and use of medical prediction algorithms.


Disclaimer: Predictie algoritmes dienen enkel ter ondersteuning en naslag geraadpleegd te worden en zijn geen vervanging voor medische besluitvorming door professionals.
Evidencio v3.38 © 2015 - 2025 Evidencio. Alle rechten voorbehouden