Development and external validation of nomograms for predicting prostate ca - Evidencio
Development and external validation of nomograms for predicting prostate cancer and clinically significant prostate cancer in patients with PSA between 4-20 ng/mL

Purpose This study aimed to develop and externally validate nomograms for predicting prostate cancer (PCa) and clinically significant prostate cancer (csPCa) in patients with prostate specific antigen (PSA) between 4-20 ng/mL.

Methods Nomograms were developed using data from patients with PSA of 4–20 ng/mL who underwent prostate MRI and biopsy at our institution (n = 440). The outcomes were the presence of csPCa and PCa. Significant variables identified through univariate logistic analysis and LASSO regression analysis were used to construct four nomograms separately for lesions located in the peripheral and transitional zones. These nomograms were subsequently validated and evaluated using an external independent cohort of patients obtained from the Prostate Imaging: Cancer AI (PI-CAI) database (n = 313).

Results Age, Prostate Imaging Reporting and Data System (PI-RADS), apparent diffusion coefficient (ADC), and PSA density (PSAD) were independent predictors in the prediction model for csPCa in the peripheral zone (PZ), showing an area under the curve (AUC) of 0.934 in the external validation cohort. For csPCa in the transitional zone (TZ), PI-RADS, ADC, and PSAD were independent predictors, with an AUC of 0.903. Additionally, PI-RADS and ADC were independent predictors for PCa in PZ, with an AUC of 0.882, while PI-RADS and PSAD were independent predictors in TZ, with an AUC of 0.764. Calibration curves indicated good agreement, and decision curve analyses (DCAs) confirmed the clinical benefits of the nomograms.

Conclusion Our diagnostic nomograms are simple, feasible, anddemonstrate strong performance in predicting of csPCa and PCa.

Autores de la investigación: Kunlin Wu
Versión: 2.0
  • Público
  • Urología
  • {{ modelType }}
  • Detalles
  • Guardar entrada
  • Entrada de carga
Mostrar
Unidades

Calcular el resultado

Establezca más parámetros para realizar el cálculo
Calculando......
Error de cálculo. Por favor, compruebe el algoritmo.

Información condicional

{{ file.classification }}
PRO
Nota
Las notas sólo son visibles en la descarga de resultados y no serán guardadas por Evidencio

Este algoritme se proporciona con fines educativos, formativos e informativos. No debe utilizarse para apoyar la toma de decisiones médicas ni para prestar servicios médicos o de diagnóstico. Lea nuestro Descargo de responsabilidad.

Algoritmer subyacentes Parte de
Comentarios
Comentario
Escriba un comentario
Los comentarios son visibles para cualquiera

Comentarios sobre el algoritme

Aún no hay comentarios 1 comentario {{ model.comments.length }} Comentarios
En {{ comment.created_at }} {{ comment.user.username }} un autor ya no registrado escribió:
{{ comment.content }}
Evidencio v3.39 © 2015 - 2025 Evidencio. Todos los derechos reservados